
Pimp my Taxi Ride

DEBS Grand Challenge 2015

Aimylos Galeos
Computer Engineering and

Informatics Department
University of Patras, Greece
galeos@ceid.upatras.gr

Prokopis Gryllos
Computer Engineering and

Informatics Department
University of Patras, Greece
gryllos@ceid.upatras.gr

Nikolaos Leventis
Computer Engineering and

Informatics Department
University of Patras, Greece

leventis@ceid.upatras.gr
Konstantinos Mavrikis
Computer Engineering and

Informatics Department
University of Patras, Greece
mavriki@ceid.upatras.gr

Spyros Voulgaris
Dept. of Computer Science

VU University
The Netherlands

spyros@cs.vu.nl

ABSTRACT
The DEBS Grand Challenge is an annual event in which par-
ticipants are asked to provide the fastest possible solutions
to real-world problems in the area of event-based systems.
This paper reports in detail the architecture and algorithms
employed in our custom implementation for the 2015 Grand
Challenge. We start by laying out the overall architecture of
our design, we continue by detailing the inner working and
structures for carrying out the challenge, and we conclude
with a discussion on lessons learned.

Keywords
Event-based Systems, Data Processing, High Performance
Computing, Data Structures

1. INTRODUCTION
The 9th ACM International Conference on Distributed Event-
Based Systems (DEBS 2015) defined a Grand Challenge [2]
for designing and building the fastest-possible implementa-
tion of a stream-processing application.

The application concerns massive data collected under the
FOILing NYC’s Taxi Trip Data project [3]. This project
has collected itinerary information on all rides of over 10,000
taxis in a wide area of 150km × 150km around New York
City over the whole year of 2013. The collected information
includes the (anonymized) taxi ID, (anonymized) taxi li-
cense ID, pickup and dropoff coordinates, pickup and dropoff
times, and the total cost of the ride divided in basic fare,
tax, tolls, and tip.

The Grand Challenge defined a complex problem consisting
of two queries. Assuming that the data of a taxi ride be-

comes available altogether the exact moment it drops the
passengers off (i.e., entries in the file are sorted by drop-
off time), we should concurrently execute the following two
queries:

1. Frequent Routes: Considering the area split in a
grid of 300× 300 cells of 500m× 500m each, compute
the running list of the top-10 most frequent routes (i.e.,
〈pickup cell, dropoff cell〉 tuples) in a sliding window
of 30 minutes. The top-10 list should be output in a
specific format every time it is altered.

2. Profitable Cells: By splitting now the area in 600×
600 cells of 250m×250m each, compute the running list
of the top-10 most profitable cells. A cell’s profitability
is defined as the ratio of the cell’s current profit over
the number of empty taxis currently residing in the
cell. In their turn, the cell’s current profit is defined
as the median of fare + tip profits out of all rides
that started in that cell and ended within the last 15
minutes (irrespectively of the dropoff cell), while the
cell’s number of empty taxis is defined as the number
of taxis that had a drop-off in that cell within the last
30 minutes and have not reported any subsequent ride
yet.

Note that these two queries have to be computed in parallel,
sending their output in separate files.

The criterion for determining the Grand Challenge winner is
based on two metrics. The first metric is the total execution
time for computing both queries, while the second one is
the average processing time per record. Clearly, both metrics
should be optimized in parallel.

In this paper we report on our design and implementation
of our solution. More specifically, Section 2 presents an
overview of our high-level design decisions. Section 3 de-
tails the heavily multithreaded pipelined architecture of our
solution. Subsequently, Section 4 and Section 5 detail the
data structures and inner workings for computing queries 1



and 2, respectively. Section 6 explains our evaluation tech-
niques and fine-tuning methods, while Section 7 follows with
a concluding discussion.

2. SOLUTION OVERVIEW
A number of decisions had to be taken during the brain-
storming and design phase of our endeavor. Our starting
design decision was on whether we should pursue a solution
based on an established stream-processing platform (e.g.,
Apache Storm [1]), or go for a highly tailored and optimized
custom solution.

We opted for a custom solution, for the following reasons.
First and foremost, the challenge’s goal was clearly stated
upfront: performance, performance, and performance. That
is, code maintainability, functionality extensibility, and scal-
ability of the application on more than one machines were
not our goals. That is, a custom-made solution would be
able to tailor the executable to optimize on the specific prob-
lem at stake. Second, we had to take into consideration that
our application would be tested on finite and rather limited
resources: a single quad-core machine with 8GB memory.
Thus, going for a tailor-made implementation would give us
more control over the use of our limited resources.

A second design decision concerned the selection of the pro-
gramming language and libraries to use. The selection of
C/C++ was a clear choice for us, as the lower you get on
the“bare metal” the more power you can squeeze out of your
CPU(s).

A third decision had to do with the selection of the plat-
form. We opted for Linux and did all our implementation
on Ubuntu 14.10 with the Gnome-Shell environment. The
reason for that is a rather subjective one: we consider Linux
a superb development platform.

Regarding the design of our solution, the two cornerstones of
our design are a very efficient multithreaded stream process-
ing architecture, and very highly optimized data structures
for the requested computations.

As far as the multithreading part is concerned, it became
clear upfront that we were dealing with a highly compu-
tationally demanding problem, that certainly required ex-
tensive multithreading. We took extra steps for that, and
split our program in five pipeline stages with a total of eight
threads. The details of the multithreaded solution are given
in Section 3.

With respect to the data structures we used, we took ex-
tra care to keep complexity as low as possible, with most
operations executing at O(1), while we carefully wrote our
code to minimize on the constant factor. The details on the
structures for Queries 1 and 2 are presented in Sections 4
and 5, respectively.

3. PIPELINED STREAM PROCESSING
We first give an overview and reasoning of our design, and
then we dive into the gory details.

Input 
Thread 

Q1 
Thread 

Q2 
Thread 

Disk 
Disk 

Disk 

Parsed-data 
Buffer 

Figure 1: Basic parallelization at a conceptual level.

3.1 Design Rationale
The target application follows a classic execution model: (i)
reading input from disk, (ii) performing computations, and
(iii) writing output back to disk. Chopping it up in elemen-
tary pipeline stages of the right computational granularity
is key to harnessing the power of modern multicore CPUs,
and speeding up its execution.

At first glance, there is an obvious point of parallelization
between the two queries, Query1 and Query2. Although
they operate on the same input data, their respective calcu-
lations are completely orthogonal to each other, rendering
them excellent candidates for being assigned to two separate
threads. Handling input, that is, taking care of disk read-
ing and parsing input data, forms a third natural point of
parallelization that lets the Q1 and Q2 threads undistracted
to their computations. This leads to the conceptual design
laid out in Fig. 1.

In order to gain more speed, though, a finer granularity split-
ting of tasks is required. At a minimum, disk reading and
writing operations should be assigned their own threads, to
shield CPU-intensive tasks from disk I/O latency. This gives
us a pipeline of four stages: disk reading, parsing of input
data, Q1 and Q2 computations (in parallel), and disk writ-
ing.

After implementing this scheme and timing the respective
stages, we observed that threads Q1 and Q2 were taking
roughly the same time (Q2 being slightly heavier), while the
parser thread was taking almost twice as much, essentially
forming a bottleneck. This came as no surprise, having to
process roughly 190 ASCII characters per line and to parse
diverse data types, including dates, coordinates, MD-5 keys,
and prices. Splitting up the parser was vital to achieving a
higher speed.

Splitting up the parser, though, was not straightforward.
The variable length of input lines prevented their processing
in arbitrary order, as the next line’s beginning could not
be known before the current line’s end had been traced.
This imposed a sequential component to parsing the input.
We circumvented this hurdle by factoring out the absolutely
minimal functionality for which sequential execution could



N-O-P-Q1/2 

Q2/2-R-S-T-U 

V-W-X-Y-Z 

Disk 
Reader 

Line 
Splitter 

Field 
Parser 

Q1 

Q2 

H 

I 

J 

K Field 
Parser 

Field 
Parser 

Disk 
Writer 

Q1 

Disk 
Writer 

Q2 Disk 

Disk 

Disk 
L 

M 

N 

O 

P 

Q 

A1 

B1 

A2 

B2 

E 

F 

G 

H 

I 

J 

B 

C 

D 

(A) 

Block 
Buffer 

Line 
Buffer 

Record 
Buffer 

Output 
Buffer 

Output 
Buffer …

 
Figure 2: The pipeline architecture for stream processing.

not be prevented, therefore letting aside the bulkier part of
the parser’s job for parallel execution, as explained in the
next section.

This led us to the final architecture of our application, de-
picted in Fig. 2. It consists of five pipeline stages, and a
total of eight threads (we opted for two field parsers in our
final deployment, as discussed later).

3.2 Multithreaded Architecture
Our final application architecture is shown in Fig. 2. It
consists of five pipeline stages, glued through four levels of
circular buffers.

The DiskReader thread feeds the BlockBuffer with raw
data from the input file. The BlockBuffer is organized as
a circular buffer of fixed-size blocks allocated in contiguous
memory ranges. The DiskReader’s operation is, thus, very
basic.

As mentioned in the previous section, parsing has been split
in two stages. One that takes care of the bare minimum
sequential functionality, and a second one that can be par-
allelized for performance.

In particular, we split the parser in two tasks, the Line-
Splitter and the FieldParser. As its name suggests, the
former is in charge of spotting the beginning of subsequent
lines, and storing for each line two pointers in LineBuffer:
a pointer to its first character (in the BlockBuffer), and
a pointer to the record where that line’s fields should be
parsed in (in the RecordBuffer).

This allows any number of FieldParser threads to run si-
multaneously, each picking the next unprocessed LineBuf-
fer entry and parsing the respective line’s fields to the asso-
ciated data record. Thus, two or more lines may be parsed
in parallel, while their sequential order is retained in the

respective data records.

The RecordBuffer contains records, each holding a line’s
parsed data. That is, a record is a struct containing the
taxi’s ID, the pick up and dropoff cell IDs and times, the
trip’s profit, etc.

Records are then being consumed by Query1 and Query2,
which execute in parallel and independently. When either of
the query threads determines that its top-10 list has been up-
dated, it stores the corresponding information to be printed
in its OutputBuffer, and lets the respective DiscWriter
thread take care of disk I/O. This allows the query thread
to keep computing its subsequent records.

3.3 Synchronization Pitfalls
Although our architecture appears to be a chain of stan-
dard producer-consumer threads, a number of synchroniza-
tion details lie under hood, requiring fine-grained, delicate
handling.

As expected, we have defined exactly one mutex per data
structure, that is, there is a total of five mutexes in the
application (each output buffer is a separate structure).

Let us start with the BlockBuffer, for example. Clearly,
the DiskReader thread is the producer, and the Line-
Splitter thread is the consumer. However, this differs
from the typical producer-consumer scenario, as the lock
on the data is not released by the consumer. In fact, as
the FieldParser is reading ASCII characters directly from
the BlockBuffer’s memory (to avoid redundant memory
copying), the buffer’s entries can only be unlocked after all
associated lines have been processed by some of the Field-
Parsers. The fact that these lines can be processed in an
arbitrary order does not simplify matters.

To resolve this, the LineSplitter annotates each processed



--- 

0 0 0 0 1 1 1 2 2 3 3 5 

--- 

--- 

--- 

0 

9:28am 9:30am 9:23am 9:05am 9:05am 9:01am … 

Expiration records 

Frequency counters 

Figure 3: Data structure for Query 1.

BlockBuffer block with the number of lines that partially
or fully lie on it, as well as with a flag telling whether it’s
done processing that block or not yet (i.e., if yes, the au-
thoritative line count for that block is known). In addition,
the LineSplitter also annotates each LineBuffer entry
with the block (or, in some cases, two blocks) on which the
line lies. Finally, when a FieldParser thread completes
the parsing of a line, it acquires the respective block’s mu-
tex, and increments a counter indicating how many lines of
that very block have been parsed. It additionally checks
whether the LineSplitter has marked that it’s done with
that block, and in that case checks whether the total and
parsed lines counters for that block match. If yes, it releases
that block and notifies the DiskReader thread (which could
have been blocked due to a full BlockBuffer) that a block
has just been freed.

The LineBuffer and RecordBuffer locking mechanisms
have their own peculiarities. The former has one producer
(LineSplitter) but potentially many consumers (Field-
Parser), where each entry is to be consumed precisely once
by any one of the consumers. The latter (RecordBuffer)
has potentially many producers (FieldParser), and pre-
cisely two consumers (Query1, Query2), where each entry
is to be consumed by both consumers.

Although these are not as complex as the BlockBuffer
locking mechanism described above, all deviations from the
standard producer-consumer model deserve very detailed
thinking and extensive testing. We invested in both.

The last two OutputBuffer locking mechanisms were the

only standard consumer-producer paradigms in our applica-
tion.

4. QUERY 1: FREQUENT ROUTES
For Query1 we need to compute the top-10 most frequent
routes during the last 30 minutes. As Query1 considers a
grid of 300× 300 cells, there is a total of 3004 = 8.1 billion
distinct routes. Clearly, such a huge array cannot fit in 8GB
of memory, but would have anyway been an enormous waste
if it did.

Fortunately, we measured that the actual number of distinct
routes that appear at least once in the full sample file is
below one million, therefore it is possible to store them all
in main memory, and simply index them through a hash
table.

So, for each seen route we store a frequency counter indi-
cating the number of times the route has been taken in the
last 30 minutes. This is simple to implement. For each new
route, we hash its pickup and dropoff cell IDs and feed the
outcome to a hash table to get hold of the route’s frequency
counter. Once we have reached that counter, we just incre-
ment it by one.

Implementing the 30-minute window required an additional
structure. In particular, we implemented a FIFO of expi-
ration records. Each expiration record contained two fields:
the trip’s dropoff time, and a pointer to the respective route’s
frequency counter.

Fig. 3 depicts the data structures used for Query1. Han-



0 0 0 0 1 1 1 2 2 3 3 5 0 

0 1 2 3 4 5 6 7 8 9 … 

Frequency counters 

Quick insertion pointers 

Figure 4: Quick insertion pointers for Query 1.

dling of the 30-minute window should now be clear. Upon
registration of the current trip (i.e., the one described in the
line currently being processed by Query1), we add a new
expiration record with its dropoff time to the head of the
aforementioned FIFO. At the same time we check if one or
more expiration records at the tail of the FIFO have actually
expired (i.e., have dropoff time more than 30 minutes older
than the current trip’s dropoff time), and for each expired
record we use its pointer to reach and decrement the respec-
tive counter record, and then we evict it from the FIFO.

The mechanisms described so far provide us with up-to-
date frequency counters of each route’s repetitions in the
last 30 minutes, with O(1) complexity both for increment-
ing a route’s counter as well as for handling its expiration.
Computing the top-10 list among these counters after every
single update, though, is yet another challenge.

For estimating the top-10 in a swift manner, we decided to
maintain all counter records sorted at all times, through a
doubly-linked list. The main observation motivating this
design decision is that frequency counters can only change
by one. They are either incremented or decremented by one
at a time. Therefore, a frequency counter can only move
up or down by at most one position in the sorted list of
counters, which is done in O(1).

One last observation led to a further optimization of the
sorted list operation, illustrated in Fig. 4. There may be lots
of routes having the same frequency counter value, especially
for routes of low frequency (e.g., lots of routes having coun-
ters 0 or 1). When such a route’s frequency counter is incre-
mented (or decremented), we have to traverse all same-value
counters towards the higher (or lower) frequency routes. To
avoid a sequential traversal, we maintain an array of quick
insertion pointers to the first record of each value in the list.
I.e., position i of that array has a pointer to the first record
with counter i. This way, when a route’s counter changes, we
can literally remove it from its current position and embed
it in its new spot in the list with complexity O(1).

5. QUERY 2: PROFITABLE AREAS
In Query2 we need to find the running top-10 most prof-
itable cells. More specifically, we need to compute the fol-
lowing (running) values for each cell:

1. Median profit: The median profit of all trips that
started in that cell, and were completed (at any cell)
within the last 15 minutes.

2. Empty taxis: The number of trips that ended in that
cell within the last 30 minutes, and whose taxis have
not completed a newer trip yet (in which case they
would count as empty taxis for their new drop-off cell).

3. Profitability: This is the ratio of the two prior val-
ues, that is, a cell’s profitability is the cell’s median
profit divided by the number of empty taxis currently
residing in that cell.

Cells’ profitabilities should be computed continuously, and
the 10 most profitable cells should be output every time the
top-10 list changes.

Note that Query2 is cell-centric, as opposed to Query1 be-
ing route-centric. Given the 600 × 600 cell grid considered
in Query2, we have to deal with a maximum of 360,000 cell
records. In order to avoid excessive memory waste (as many
cells lie over the Hudson River and are, thus, never refer-
enced), we introduce a level of indirection, defining an array
of 360,000 pointers to records. The actual records, there-
fore, reside in a significantly smaller pool of 100,000 initially
allocated cells (Fig. 5(a)), as well as extra dynamically al-
located pools should that initial pool run out of available
entries.

5.1 Median profit
As we have to compute the median profit per cell, we allocate
a separate cell record for each seen cell, as shown in Fig. 5(b).

To compute the running median of a dynamic list of profits
for a given cell, we partition them in half across two heaps:
Hlow containing the lower half of that cell’s profits, and Hhigh

containing the higher half. The former heap, Hlow, is a max
heap, i.e., its maximum element floats to its root. In con-
trast, the latter heap, Hhigh, is a min heap.

We also enforce the invariant that the two heaps’ sizes can-
not differ by more than one. This is easy to accomplish.
After adding or removing a profit from the corresponding
heap, we check whether the invariant still holds, and if not



7.5 

Cell records pool 

9:26am 9:30am 9:22am 9:07am 9:13am 9:03am 

Expiration records 

9:16am 

6 

2 5 

2 1 4 - 

7 

7 9 

8 9 - - 

Hlow Hhigh 

MEDIAN 

2 - 

- - - - 

8 6 

- - - - 

Hlow Hhigh 

MEDIAN 5 3 

CELL 3.7 CELL 5.4 

5.3 3.7 1.2 1.6 8.8 6.2 2.3 1.9 2.7 8.5 9.2 7.2 5.4 3.9 4.4 1.4 . . . 

2 EMPTY TAXIS 3 PROFITABILITY 5 EMPTY TAXIS 1 PROFITABILITY 

15 MIN 30 MIN HEAD 

Cell record Cell record 

(a) 

(b) 

(c) 

(d) 

TAXI MEDALLION 

Taxi Medallion 
Hash Table 

Figure 5: Query 2 data structure.

we remove the larger heap’s root (i.e., Hlow’s max or Hhigh’s
min) and we insert it in the other heap, making them equi-
sized again.

Now the median’s computation is straightforward. If any
of the heaps is larger than the other (i.e., by precisely one
item), the larger heap’s root is the median. Otherwise the
median is defined as the two roots’ mean. In the special case
that both heaps are empty, the median is considered to be
zero. Fig. 5(b) presents two median calculation examples.

In order to avoid performance penalties by dynamic memory
allocation, we implemented these heaps as fixed-size arrays.
We statically allocated a pair of heaps for each cell with a
capacity of 256 entries per heap. That is, we can handle a
maximum of 512 trips having started at the same pickup cell
in a window of 15 minutes. For the rare case that a cell’s
popularity exceeds that threshold, we transfer its data to a
new pair of heaps with higher capacity (and subsequently to
even higher should that be exceeded too) which is dynami-
cally allocated. Due to the rarity of this case, performance

penalty is negligible.

Removing profits after the 15-minute window has elapsed,
bares strong similarities to the FIFO-based handling of the
sliding window in Query1. In particular, we employ a FIFO
structure again, whose elements store the trip’s dropoff time
and a reference to the respective profit. Note that, as our
heaps are implemented by arrays whose items are moved
around during heapify operations, a profit’s address is not
fixed so it cannot be pointed at directly. Therefore, we also
maintain a reverse-indexing array (not shown in the figures)
mapping a profit’s value to its current index in the heap ar-
rays. Clearly, the reverse-indexing array has to be updated
for each heapify operation, however it saves us from an ex-
pensive linear search through the heap for a profit when it
has to be removed.

5.2 Empty taxis
In this calculation we need to compute the (running) num-
ber of empty taxis in a cell during a sliding window of 30
minutes.



12 

7 11 

6 7 8 10 

6 6 6 6 3 7 6 2 

22 

20 

18 

18 

17 

17 

17 

15 

15 

14 

Top-10 Profitable Cells Max-Heap storing profitability of 11th cell and below 

1st 

2nd 

3rd 

4th 

5th 

6th 

7th 

8th 

9th 

10th 

11th 

Figure 6: Top-10 calculation for Query 2.

For memory and performance gains, we share the FIFO
structure used for managing the 15-minute window of prof-
its. Simply we maintain two pointers, one pointing at the
oldest record not exceeding 15 minutes, used for profit expi-
rations, and the other pointing at the oldest record not ex-
ceeding 30 minutes, used for empty-taxis expirations. The
combined FIFO structure is illustrated in Fig. 5(c).

A noteworthy difference to Query1’s FIFO, is that an empty-
taxis expiration record in Query2 may also have to be re-
moved at an arbitrary time, when the same taxi has been
involved in a newer trip before its window limit has been
reached. To handle that, we maintain a hash table indexed
by taxi medallions, and pointing at expiration records in the
Query2 FIFO. This hash table is presented in Fig. 5(d).

When a new trip is being processed, a new expiration record
is added to the head of the Query2 FIFO. Additionally,
an entry associating the respective taxi ID with the newly
created expiration record is inserted to the hash table. If,
however, the hash table already contains an entry for that
same taxi pointing at an active expiration record, the re-
spective empty-taxis counter is decremented and that expi-
ration record is marked inactive before the hash table entry
is updated to point at the new expiration record. When an
expiration record becomes more than 30 minutes old, the
empty-taxis counter for the respective cell is decreased only
if that expiration record was still active. If it was inactive, it
means that the empty-taxis counter decrement has already
taken place, due to that taxi’s involvement in a newer trip.

Finally, note that the active-inactive flag is considered exclu-
sively for the 30-minute expiration of empty-taxis counters,
while it is not taken into consideration by the 15-minute
expiration of profits.

5.3 Profitability top-10
After the median profit and/or number of empty taxis in a
cell is updated, we trivially also update its profitability by a
mere division. However, extracting the (running) top-10 out
of a hundred thousand cells requires some extra mechanism.

In particular, we store the top-10 profitability cells separately
from all the rest. The top-10 cells are stored in a sorted ar-
ray, while all remaining cells (i.e., from the 11th onwards) in
a max-heap structure. When a cell’s profitability is updated
either upwards or downwards, we move it accordingly either
within the top-10 array or within the heap, depending on

where it already resided, or we insert it anew into the heap
if it had not yet been registered. If either the top-10 array’s
minimum element or the heap’s root was changed during
this action, we compare the two, and if the heap’s root is
higher (or equal, to cater for freshness-based priority) we
swap the two and we trigger a heapify-down operation for
heap restructuring. Upon a change of the top-10 ranking,
we also trigger the generation of new output.

6. EVALUATION AND FINE-TUNING
First, let us explicitly state how we measured the requested
metrics (Section 1). For the total execution time we used the
well-known Linux /usr/bin/time tool. For determining per-
record delays, for each record we mark the current time in
microsecond granularity using the clock_gettime() POSIX
function right before starting to parse its line of characters1.
Then, we use the same function to take a second timestamp
right before printing the output2.

Evaluating our implementation was a defacto standalone
procedure, due to the lack of alternative implementations
to compare against. This led us to devising the following
strategy. First, we strived for the leanest and fastest possi-
ble implementation of every single pipeline component, split-
ting the component in parallel stages if possible. Second, we
applied precise timing on all components and identified the
slowest one, that is, our application’s bottleneck. Lastly,
we fine-tuned our thread synchronization mechanism to en-
sure that the slowest component never stops working, i.e., it
never has to wait for the next input item.

In our implementation Query2 was identified to be the slow-
est component, being slightly slower than Query1 (3.073144
average CPU clock ticks per record vs. 2.597875). A ma-
jor implication of that is that the sizes of buffers between
threads (BlockBuffer, LineBuffer, and RecordBuffer in Fig. 2)
have a major effect in the overall performance, notably with
respect to the second evaluation metric, that is the average
processing delay per record (see Section 1).

More specifically, the use of large buffer sizes lets Query1
gradually move far ahead of Query2 in the records they pro-
cess, and the same applies to the LineSplitter and Field-
Parser threads. That is, a large number of lines are piled
up in long buffers, being processed instantly by Query1 but
waiting long before being processed by Query2. This has
a detrimental effect on Query2’s reported delays, as they
accumulate the time records have been laying in interme-
diate buffers. At the same time, the fast advancement of
Query1 does not buy us anything, as the total time is still
determined by the slowest of the two.

Our solution to that was to limit the size of buffers after
extensive experimentation and benchmarking of our appli-
cation’s execution time and respective average delays.

A second major challenge for fast execution was to mini-
mize the overhead caused by excessive thread switching and
frequent blocking on condition variables. On that front, we

1file linesplitter/LineSplitter.cc line 93
2file dataStructQ1Output.cc lines 172, 222, 264 and
file dataStructQ2Output.cc lines:185, 265, 311



came up with another technique, applying thresholds on sig-
naling blocked threads.

More specifically, as some producer threads were faster than
their respective consumers (e.g., DiskReader was faster
than LineSplitter), the respective buffers were practically
continuously full, the consumer being blocked on a write. In
normal operation, as soon as the consumer read an entry,
it signaled the producer than more space is made available
for producing more data. This, however, caused continuous
switching between the threads. To address that, we defined
thresholds, which prevent the consumer from signaling the
producer unless their intermediate buffer’s occupancy has
dropped below a certain level. This significantly diminished
thread switching, leading to total execution speedup of over
20%, and lower delay times by a factor of two.

Although we cannot compare our solution against any other
implementation, it is indicative that our implementation ex-
ecutes faster than the well known wc (word count) on the
same file. Specifically, for a file for which wc takes over 5
minutes, our complete Query1 and Query2 solution termi-
nates with complete output in the respective files in around
4 minutes and 20 seconds.

7. DISCUSSION
Designing and implementing a solution for the DEBS Grand
Challenge 2015 gave us an excellent opportunity to work
on an interesting topic, and to dive into the gory details of
thread synchronization and hacking-level code optimization.

First, the well known saying, that “Early optimization is the
root of all evil” was confirmed over and over in our work.

Second, we learned that pipelining very often leads to bot-
tlenecks due to excessive thread-switching. The technique
we applied (thresholds) gave impressive results in the delay
times without hurting the throughtput time.

Lastly, the whole procedure reminded us of the great de-
velopment facilitation provided by high-level languages and
frameworks, at the expense of extra performance gains. It’s
all about a tradeoff, and for the DEBS Grand Challenge the
criterion was one: great performance!

8. REFERENCES
[1] Apache Storm (http://storm.apache.org/).

[2] DEBS Grand Challenge 2015
(http://www.debs2015.org/call-grand-challenge.html).

[3] FOILing NYC’s Taxi Trip Data
(http://chriswhong.com/open-data/foil nyc taxi/).


